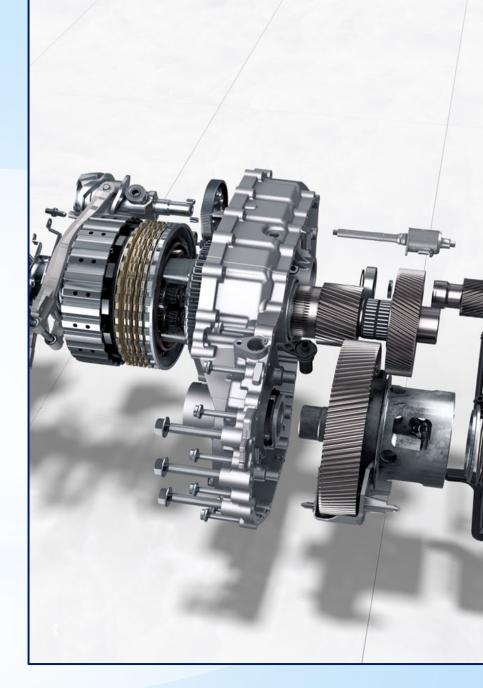


BRINGING HIGH VALUE TO ENGINEERS

Agenda:

- -Job opportunities in Bepa
- -Projects for engineers in Bepa
- -Benefits and Policies for employees
- -Contact for career


Job opportunities in Bepa

Happy customers require happy employees. We strive to make BEPA the most attractive consultancy company. We offer our employees:

- A good environment and top wages
- Team bonuses based on profit sharing
- Partnerships and stock dividends
- A small, flat organization with self-driven employees

Projects for engineers in Bepa

Testing against permissible stresses

Material check of permission stress base on standard have required (e.g.: EN 13155 or ...)

At the end of each calculation the result is either a stress or a utilization. To test these results these formulas are used.

For a calculated stress the following is used.

$$Test(X_1, Y_1) \coloneqq \text{if } |X_1| < Y_1$$

$$\parallel \text{"OK"}$$

$$\text{else}$$

$$\parallel \text{"NOT OK"}$$

$$UR\left(X_{1},Y_{1}\right) \coloneqq \frac{X_{1}}{Y_{1}}$$

Where X_1 is the calculated stress and Y_1 is the permissible stress.

UR is the utilization.

$$vM_1 = 100 \ MPa$$

$$Test(vM_1, \sigma_{S355.16}) = \text{"OK"}$$

$$UR(vM_1, \sigma_{S355.16}) = 0.64$$

For a calculated utilization the following is used

$$Test_{UR}(UR) \coloneqq \text{if } UR < 1$$

$$\parallel \text{"OK"}$$
else
$$\parallel \text{"NOT OK"}$$

Where UR is the utilization. Example

$$UR(vM_1, \sigma_{S355.16}) = 0.64$$

$$Test_{UR}(UR(vM_1, \sigma_{S355.16})) = "OK"$$

Loading calculation base on requirement (using Mathcad)

- Sling forces
- Distribution forces
- Concentrated force
- Spring force (if any)

WLL (Mainhouse): $m_{WLL} = 60 \ tonne$

WLL: $S_{WLL} = m_{WLL} \cdot g$ $S_{WLL} = 588.4 \text{ kN}$

Spreader beam weight: $m_{sp_beam} \coloneqq 5$ **tonne**

Transport beam weight: $m_{tp\ beam} := 0.5\ tonne$

Rigging weight: $m_{rig} = m_{sp\ beam} + 2 \cdot m_{tp\ beam} = 6$ tonne

Load from Rigging: $S_{DL} = m_{rig} \cdot g$ $S_{DL} = 58.84 \ kN$

Hook load: $F_{Hook} = S_{DL} + S_{WLL}$ $F_{Hook} = 647.24 \text{ kN}$

Spring sling angle from vertical: $\alpha_{AMH spring} := atan$

Spring tension when lifting yoke: $F_{s_MH_spring} = \frac{m_{tp_beam_low} \cdot g}{2} = 2.48 \text{ kN}$

Spring extended when lifting yoke: $\delta_{spring~MH} := F_{s_A_MH_spring} = 127~mm$

Spring extended when lifting Mainhouse: $\delta_{spring_MH_2} \! := \! l_{2_s4.7} \! - \! l_{3_s4.7} \! = \! 299 \; mm$

Total spring length when lifting Mainhouse: $l_{spring_MH} := l_{spring_MH_total} = 1520 \ mm$

Total tensile force on spring when lifting Mainhouse: $F_{t_spring_MH} \coloneqq \delta_{spring_MH_total} \cdot k_{spring} = 8.3 \text{ kN}$ $\frac{F_{t_spring_MH}}{a} = 846$

Check of spring stroke utilization: $Check_{s4.7} \coloneqq Test \left(\delta_{spring_MH_total}, \delta_{spring_per} \right) \qquad Check_{s4.7} \coloneqq \text{OK}"$ $UR_{s4.7} \coloneqq UR \left(\delta_{spring_MH_total}, \delta_{spring_per} \right) \qquad UR_{s4.7} = 0.91$

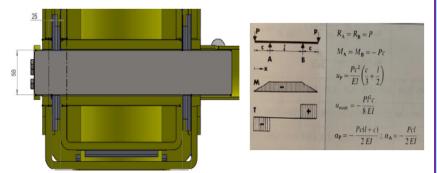
Mathcad calculation:

Check the critical stress in the weak section with

- Bending stress
- Torsion stress
- Normal stress
- Shearing stress
- Buckling check for the beam
- Combination stress

Tension force per bolt:
$$F_{t9.Ed} = \frac{R_A \cdot \sin(6 \ deg)}{3} = 3.75 \ kN$$

Tension resistance factor: $k_{2,cs} = 0.9$ (hex head screw)


Tension resistance

rension resistance per bolt:
$$F_{t9.Rd}\!:=\!k_{2.cs}\!\cdot\!f_{ub}\!\cdot\!\frac{A_{s.M8}}{\gamma_{M2}}\!=\!6.96\;kN$$

Tension utilization: $UR_{t9} \coloneqq \frac{F_{t9.Ed}}{F_{t9.Rd}} = 0.54$

 $Test_{UR}(UR(UR_{t9}, 1)) = \text{"OK"}$

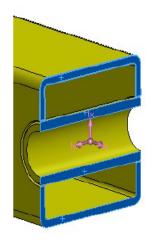
5.10 Equivalent stress in locking pin between TPS's - bending

Pin diameter: $d_{s10} = 58 \ mm$

Section area: $A_{s10} := \frac{m \cdot d_{s10}^2}{4} = 2642.08 \ mm^2$

Section modulus: $W_{\rm s10}\!:=\!\frac{\pi\!\cdot\!d_{\rm s10}{}^3}{32}\!=\!19155.08\;mm^3$

Length to section: $l_{s10} = 25 \ mm$


Bending moment: $M_{s10} \coloneqq \left(\frac{F_h}{2}\right) \cdot l_{s10} = 1904.84 \ N \cdot m$

Bending stress: $\sigma_{b_s10} \coloneqq \frac{M_{s10}}{W_{s10}} = 99.44 \; MPa$

Mathcad calculation:

Check the critical stress in the weak section with

- Bending stress
- Torsion stress
- Normal stress
- Shearing stress
- Buckling check for the beam
- Combination stress

Report coordinate values rel

Measurements are based or Section properties of the se

Area = 10450.32 millimeters

Centroid relative to assembl

X = 3253.00 Y = 274.00Z = 0.00

Moments of inertia of the ar

Lxx = 93644919.42

Lyx = 0.00 Lzx = 0.00

Polar moment of inertia of t

Angle between principal axe

Principal moments of inertia |x = 44142110.96 |y = 49502808.46

Section area $A_{s1} = 10450.32 \ mm^2$

Normal stress $\sigma_1 := \frac{F_h}{A_{s1}} = 14.58 \; MPa$

E := 210 GPa

Moment of inertia: $I_{s1} = 44142110.96 \text{ } mm^4$

 $l_{s1} = 10 \ m$

Effective length coefficient

(Free - Free):

 $K_{s1} := 1$

Effective length: $l := l_{s1} \cdot K_{s1} = 10 \ m$

Radius of gyration: $r_{s1} := \sqrt{\frac{I_{s1}}{A_{s1}}} = 64.99 \ mm$

Slenderness ratio: $\lambda_{s1} = \frac{t}{r} = 153.86 > 85 =>$ Euler buckling check

Mathcad calculation:

Check the critical stress in the weak section with

- **Bending stress**
- **Torsion stress**
- Normal stress
- **Shearing stress**
- Buckling check for the beam
- Combination stress

Plate thickness: $t_{e0} = 40 \ mm$

 $h_{s9} := 39 \cdot mm$ Section height:

 $\tau_{s9} := \frac{F_{Hook}}{4 \cdot t_{s9} \cdot h_{s9}} = 126 \ MPa$ Shear stress:

 $\sigma_{von_s s_{9,2}} := \sqrt{3 \cdot \tau_{s_9}^2} = 218 \text{ MPa}$ Equivalent stress:

 $Check_{s9.2} := Test (\sigma_{von_s9.2}, \sigma_{S690.50})$ Check of stress:

 $UR_{s9.2} \coloneqq UR\left(\sigma_{von_s9.2}, \sigma_{S690.50}\right)$

 $UR_{s9.2} = 0.85$

Area of cross section

Moment of inertia

Cut at point

 $c_{s9.3} = \max(215 - 135.74, 135.74 - 75) \cdot mm$

 $W_{s9.3} := \frac{I_{s9.3}}{c_{s9.3}}$ $W_{99.3} = 94459.78 \ mm^3$ Section modulus

 $M_{s9.3} := \frac{F_{Hook}}{4} \cdot l_{s9.3}$ Bending moment

 $\sigma_{s9.3} := \frac{M_{s9.3}}{W_{s9.3}}$ Stresses

 $\tau_{s9.3} := \frac{F_{Hook}}{4 \cdot A_{s9.3}}$ $\sigma_{von_s9.3}\!:=\!\sqrt{{\sigma_{s9.3}}^2+3~{\tau_{s9.3}}^2}$ Equivalent stress:

Check of stress: $Check_{s9.3} := Test \left(\sigma_{von_s9.3}, \sigma_{S690.50}\right)$

 $UR_{s9.3} = UR(\sigma_{von_s9.3}, \sigma_{S690.50})$

Cut at point

 $M_{s9.3} = 12.85 \ kN \cdot m$

 $\sigma_{s9.3} = 136 MPa$

 $Check_{s9.2}$ ="OK"

 $l_{s9.3} = 65.5 \ mm$

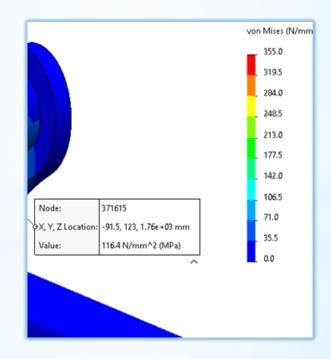
 $A_{s9.3} = 2760 \cdot mm^2$

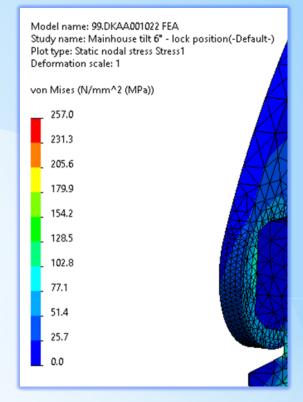
 $c_{s9.3} = 79.26 \ mm$

 $I_{e0.3} := 7486882 \cdot mm^4$

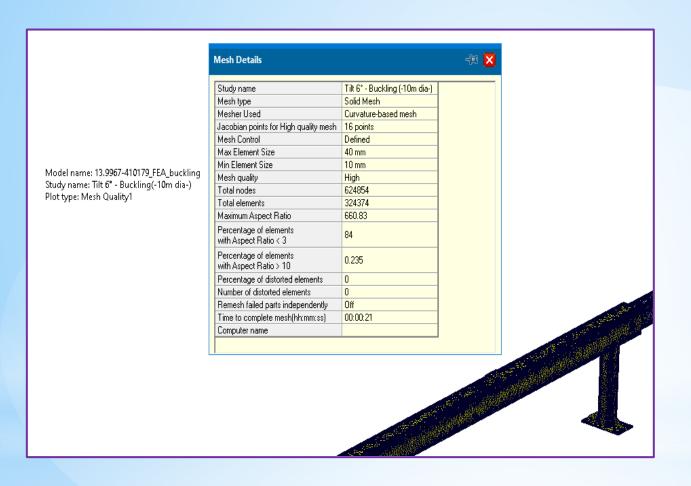
 $\tau_{s9.3} = 71.06 MPa$

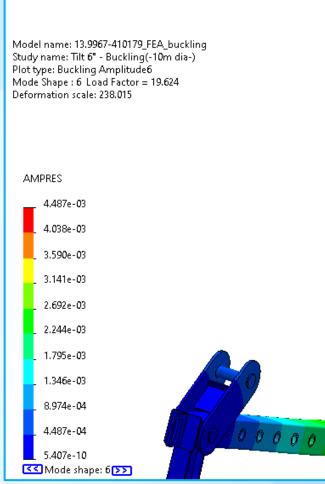
 $\sigma_{von. s9.3} = 183.43 \ MPa$

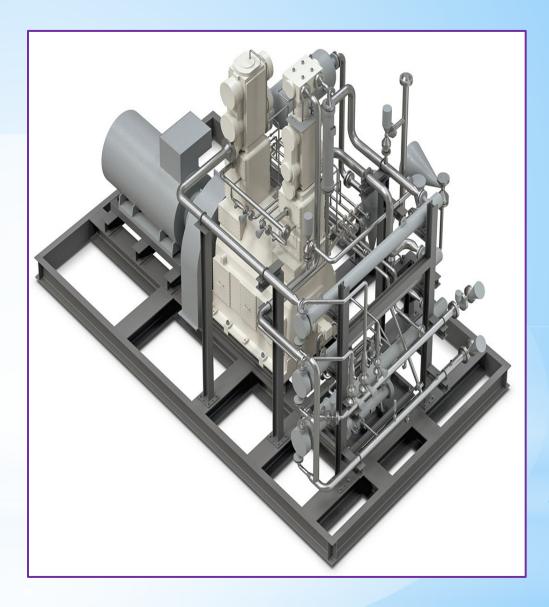

Check_{s9,3}="OK"


 $UR_{s9.3} = 0.71$

 $l_{s9.4} = 95 \ mm$


FINITE ELEMENT ANALYSIS (FEA)


- Perform the FEA tools can help Bepa engineers with all of design and optimize products and systems, reduce the need for physical prototypes and experiments, and enhance safety and performance.
- FEA is a powerful tool for simulating complex physical phenomena using computers and mathematics.


FEA for Lifting yoke

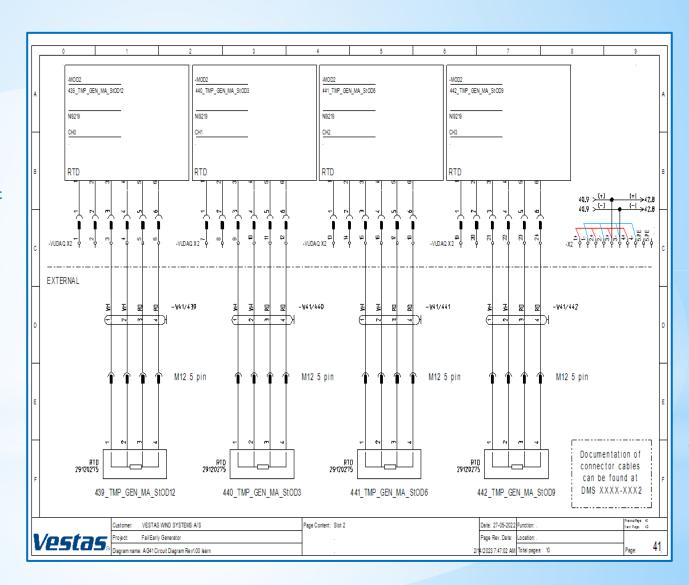
Piping and Machinery design

- BEPA Piping team with proven specialized and highly practical skills involving the fundamentals of piping system components, specifications, regulations, 2D and 3D drawings, and applications.

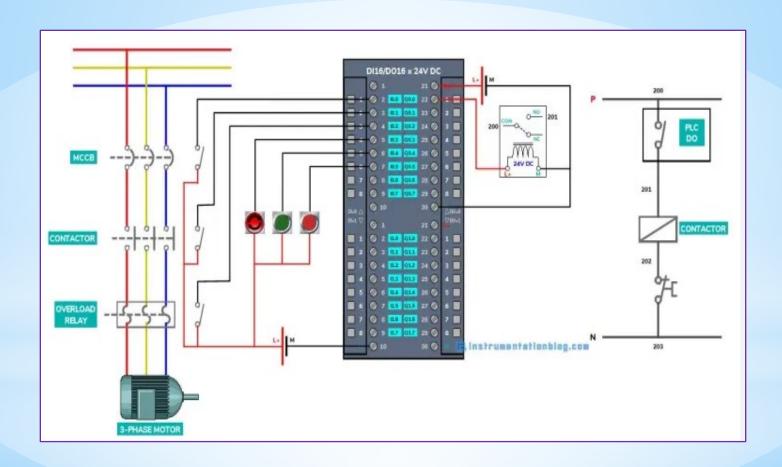
- Our engineers can delve into the engineering of complex process facilities, including plant layout planning, piping and equipment, design and software skills, and related standards.

Image	Valves	Butt weld Symbol	Flanged Symbol	Socket or Threaded Symbol	Valves	Image
南	Gate	$-\bowtie$			Gate	I
-	Globe	>			Globe	Ā,
1253	Ball		-181-	-080-	Ball	6
半 司	Plug				Plug	
\$	Butterfly	—L•1—		1000	Butterfly	5
三	Needle				Needle	1
20	Diaph	****			Diaph	-
	Y-type	−⋈−			Y-type	1
刨	Three way				Three way	25
000	Check			-1>0-	Check	*
*	Bottom	(Mary)		jena	Bottom	F
	Relief	1222			Relief	4
***	Control straight			lees.	Control straight	**
AND TO S	Control angle	New?		Dava .	Control angle	7
Image	Valves	Butt weld Symbol	Flanged Symbol	Socket or Threaded Symbol	Valves	Image

- We have given our hand to developing many kinds of processes and piping engineering projects. Having dealt with little to huge scale works with paying detailed consideration to every single importance.



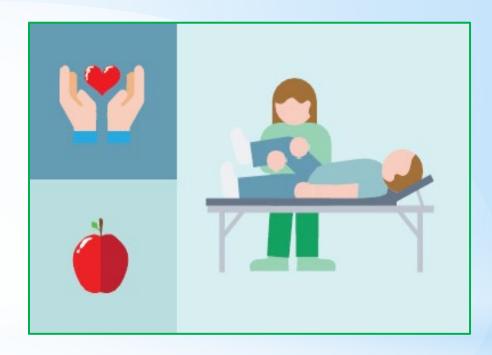
- We have delivered design and engineering solutions that are technically followed, manufacturable, safe, and complied with the latest technology and international standard varieties



Electrical Schematic Drawing

Sketch electrical wiring diagram as requirement from Client - Power and PLC control circuit for Wind System

Development of the Electrical circuit design and upgrade the application by using SEE Electrical software. Electrical design is complied with IEC standards - Power distribution circuits - Control circuits - Cabinets and Equipment layout according to customer requirements.



Company Requirements For Candidates

- English level must be enough to read and write English.
- Within 1 Year we expect English level to be sufficient to conduct meetings in English.
- We provide english classes by english professor.
- Study outside work hours when required (English, calculation and engineering related topics).
- Professional conduct.

Benefits and Policies for employees

- Annual profit sharing
- Annual bonus
- PVI insurance
- International working environment.

Contact for career

BEPA VN is an engineering consultancy. Our mother company is BEPA A/S in Denmark.

- We offer our customers engineering services. The right quality at the right price at the right time.
- We do this by offering services from high-level specialists in Denmark and skilled, low cost engineers from Vietnam.
- At BEPA, we are building a Talent Community of highly talented and motivated professionals for future job roles. If you match the described job role and are as excited as we are to have you on-board in the future, please send us CV or contact us as below:

- . BEPA office in Vung Tau City
- . Add: Floor 4^{th} , Vung Tau Plaza Building, 207 LE Hong Phong Street, Ward 8, Vung Tau city, Vietnam.
- . Contacts in Viet Nam:
 Office: +84 703 267 480, Applications@bepa.dk

